TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

Examination Control Division (Sample Question)

Exam.	Regular (New Course)		
Level	BE	Full Marks	60
Programme	All Except BAR	Pass Marks	24
Year / Part	I / II	Time	3 hrs.

[2]

Subject: - Engineering Mathematics II (SH 151)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate *Full Marks*.
- ✓ Assume suitable data if necessary.

(a)
$$\log(x^3 + y^3 - x^2y - xy^2)$$
, then show that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right)^2 u = -\frac{4}{(x+y)^2}$ [2]

(b) If
$$u = \sin^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$$
, then show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{2}\tan u$ [2]

2 (a) Evaluate
$$\int_0^\pi \int_0^x \sin y \ dx \ dy$$
 [2]

(b) Evaluate
$$\iiint_{V}^{x} xyz \, dx \, dy \, dz$$
 over the sphere $x^{2} + y^{2} + z^{2} = a^{2}$ in first octant [2]

3 (a) A particle moves along the curve
$$x = 4\cos t$$
, $y = 4\sin t$, $z = 6t$, then find the velocity and acceleration at time $t = \frac{\pi}{2}$

(b) Find the unit normal vector to the surface
$$xy^3z^2 = 4$$
, at the point $(-1, -1, 2)$ [2]

(c) If
$$\phi = x^3 + y^3 + z^3 - 3xyz$$
, then show that $\operatorname{curl}(\operatorname{grad} \phi) = 0$ [2]

4 (a) Find the Laplace Transform of the function:
$$\frac{\sin^2 t}{t}$$
 [2]

(b) Find the inverse Laplace transform of
$$\frac{s^2+s-2}{s(s+3)(s-2)}$$
 [2]

5 (a) Find the rank of the following matrix:

$$\begin{bmatrix} 1 & 2 & 0 & -1 \\ 3 & 4 & 1 & 2 \\ -2 & 3 & 2 & 5 \end{bmatrix}$$

(b) Test whether the vectors (1,2,-1),(1,2,4) and (3,0,1) are linearly independent or dependent. [2]

Solve
$$y^2 + y=0$$
, by power series method. [2]

7 Find the minimum value using Lagrange multiplier method of
$$x^2 + y^2 + z^2$$
 [4] subject to the condition $ax + by + cz = p$.

8 Change the order of integration and evaluate
$$\int_0^1 \int_x^{\sqrt{2x-x^2}} \frac{x}{\sqrt{(x^2+y^2)}} dx dy$$
 [4]

- Prove that "A line integral $\int_C \vec{F} \cdot d\vec{r}$ is independent of path C joining any two points A and B if and only if $\vec{F} = \nabla \phi$ for some scalar function ϕ "
- Using Green's theorem, evaluate the line integral $\int_C (3x^2 8y^2) dx + (4y 6xy) dy$ where C is the boundary of the region $y = \sqrt{x}$ and $y = x^2$
- Using Gauss divergence theorem to evaluate the surface integral $\iint_S \vec{F} \cdot \vec{n} \, ds$ for $\vec{F} = xy \, \vec{i} xz^2 \vec{j} + yz \vec{k}$ where S is the surfaces x + y + z = 1, x = 0, y = 0, z = 0
- Using the Laplace transform technique, solve the initial value problem: [4] $y''(t) + 4y'(t) + 3y(t) = e^{-t}, \ y(0) = 0, y'(0) = 1$
- Find the eigen values and eigen vectors of the Matrix $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ [4]
- Reduce the quadratic form $Q(x) = 2x_1^2 + x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_2x_3 + 2x_1x_3$ [4] into canonical form.
- Show that $J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$, where $J_{-\frac{1}{2}}(x)$ is Bessel's function. [4]

OR Show that $n P_n(x) = x P'_n(x) - n P'_{n-1}(x)$, where $P_n(x)$ is Legendre's polynomial. [4]

TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division 2081 Ashwin

Exam.	Regular (New Course -2080 Batch)		
Level	BE	Full Marks	60
Programme	All(Except BAR)	Pass Marks	24
Year / Part	Ī/ĪĪ	Time	3 hrs.

Subject: - Engineering Mathematics II (SH 151)

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. a) By using Euler's theorem show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$ where, $u = \tan^{-1}(x^2 + 2y^2)$ [2]
 - b) If $u = x^2$ and $v = y^2$, then find $\frac{\partial(u,v)}{\partial(x,y)}$
- 2. a) Evaluate $\int_0^1 \int_0^z \int_{x-z}^{x+z} (x+y+z) \, dy \, dx \, dz$ [2]
 - b) Evaluate the mass of the solid region bounded by $z = 1 x^2$ and planes z = 0, y = 1, y = -1 with $\rho(x, y, z) = z(y + 2)$ [2]
- 3. a) Find the directional derivative of $\Phi(x,y) = 4x^2 + 3y 4z$ at (1, 2, 1) in the direction of $2\vec{i} + 2\vec{j} + \vec{k}$ [2]
 - b) A particle moves along the curve $x = \sqrt{2} \cos t$, $y = \sqrt{2} \sin t$, z = 4t, then find the velocity and acceleration at time $t = \frac{\pi}{4}$ [2]
 - c) If $\phi = x^3 + y^3 + z^3 3xyz$, then find *div* (grad ϕ) at the point (1, -1, 1) [2]
- 4. a) Find the Laplace Transform of the function: $\frac{1-e^t}{t}$ [2]
 - b) Find the inverse Laplace transform of $\frac{s}{(s+2)^3}$ [2]
- 5. a) Find the rank of the following matrix:

$$\begin{bmatrix} 2 & -4 & 3 & 1 & 0 \\ 1 & -2 & 1 & -4 & 2 \\ 0 & 1 & -1 & 3 & 1 \end{bmatrix}$$
 [2]

- b) Test whether the vectors (1, 1, 1), (1, -1, 1) and (2, 0, 3) are linearly independent or dependent. [2]
- 6. Express $2x^2 4x + 2$ as the Legendre's polynomials. [2]
- 7. Find the minimum value using Lagrange multiplier method of $x^2 + xy + y^2 + 3z^2$ subject to the condition x + 2y + 4z 60 = 0. [4]
- 8. Change the order of integration and evaluate $\int_0^a \int_0^x \frac{\cos y}{\sqrt{(a-x)(a-y)}} dx dy$. [4]
- 9. Prove that the necessary and sufficient conditions for a vector function \vec{a} of a scalar variable t to have a constant direction is $\vec{a} \times \frac{d\vec{a}}{dt} = 0$ [4]

- 10. Find the area of asteroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{2/3}$ using Green's theorem. [4]
- 11. Apply Gauss-Divergence theorem to evaluate $\iint_s \vec{F} \cdot \vec{n} ds$ for $\vec{F} = x\vec{i} y\vec{j} + (z^2 1)\vec{k}$ and s is the cylinder formed by the surface z = 0, z = 1, and $x^2 + y^2 = 4$
 - [4]
- 12. Using the Laplace transform technique, solve the initial value problem: [4] $y''(t) - y'(t) + 6y(t) = e^{-t}, \ y(0) = 0, \hat{y}'(0) = 0$
- 13. Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} 3 & 2 & 2 \\ 1 & 4 & 1 \\ -2 & -4 & -1 \end{bmatrix}$ [4]
- 14. Reduce the quadratic form $Q(x) = 6x_1^2 + 3x_2^2 + 3x_3^2 4x_1x_2 2x_2x_3 + 4x_1x_3$ into canonical form.
- [4] 15. Solve $y'' - 4xy' + (4x^2 - 2)y = 0$ by power series method. [4]

TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division 2082 Baishakh

Exam.	Back (New Course)		
Level	BE	Full Marks	60
Programme	All (Except BAR)	Pass Marks	24
Year / Part	Ī/Π	Time	3 hrs.

[2]

[2]

[2]

[2]

[4]

Subject: - Engineering Mathematics II (SH 151)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

1. a) If
$$u = log(x^2 + y^2 + z^3 - 3xyz)$$
, then show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{3}{x + y + z}$ [2]

b) If
$$u = \tan^{-1}(x^2 + 2y^2)$$
, then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$ [2]

2. a) Evaluate
$$\int_{1}^{2} \int_{0}^{x} \frac{1}{x^{2} + y^{2}} dx dy$$
 [2]

- b) Find the volume of the hemisphere $x^2 + y^2 + z^2 = a^2$ using triple integral. [2]
- 3. a) A particle move along the curve $x = 2t^2$, $y = t^2 4t$, z = 3t 5, then find the components of the velocity in the direction of $\vec{a} = \vec{i} 3\vec{j} + 2\vec{k}$ at t = 1
 - b) Find the angle between two surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at (2, -1, 2) [2]
 - c) If $\vec{v} = x^2 y z \vec{i} + x y^2 z \vec{j} + x y z^2 \vec{k}$, then show that $div(curl \vec{v}) = 0$ [2]
- 4. a) Find the Laplace transform of $t^2 \cos at$
 - b) Find the inverse Laplace transform of $\frac{1}{4s+s^3}$ [2]
- 5. a) Find the rank of the following matrix

$$\begin{bmatrix} 2 & 4 & -4 & 3 \\ 1 & -2 & -1 & 1 \\ 1 & 2 & -1 & 3 \end{bmatrix}$$
 [2]

- b) Test whether the vectors (3,-1,4), (2,2,-3) and (0,-4,1) are linearly independent.
- 6. Solve y'' = 2y, by power series method.
- 7. Find the minimum value of $x^2 + y^2 + z^2$ using Lagrange multiplier to the condition $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$
- 8. Find the moment of inertia of the region of the ellipse in first quadrant with mass M and density proportional $\rho(x, y) = k xy$ about x-axis.
- 9. Prove that the necessary and sufficient conditions for a vector function \vec{a} of a scalar variable t to have a constant magnitude is $\vec{a} \cdot \frac{d\vec{a}}{dt} = 0$ [4]

OR

Show that the line integral $\int_C \vec{F} \cdot d\vec{r}$ is independent of path for $\vec{F} = (y \sin z - \sin x)\vec{i} + (x \sin z + 2yz)\vec{j} + (xy\cos z + y^2)\vec{k}$, and find its scalar potential.

- 10. Find the flux of $\vec{F} = x^2 \vec{\imath} y^2 \vec{\jmath} + z^2 \vec{k}$ over the plane surface x + y + z = 1 lying in the first octant. [4]
- 11. Apply Gauss-Divergence theorem to evaluate $\iint_S \vec{F} \cdot \vec{n} ds$ for $\vec{F} = 4 \ xz \ \vec{i} y^2 \vec{j} + y \ z \ \vec{k}$ over the surface of the cube x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. [4]
- 12. Using the Laplace transform technique, solve the initial value problem: $y''(t) + 2y'(t) + 5y(t) = e^{-t} \sin t, \ y(0) = 1, y'(0) = 1$ [4]
- 13. Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} 4 & 2 & -1 \\ -5 & 3 & 2 \\ -2 & 4 & 1 \end{bmatrix}$ [4]
- 14. Reduce the quadratic form $Q(x) = 2x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 2x_1x_3 + 4x_2x_3$ into canonical form. [4]
- 15. Show that $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$, where $J_{\frac{1}{2}}(x)$ is Bessel's function. [4]

Show that $(n+1)P_{n+1}(x) = (2n+1)x P_n(x) - n P_{n-1}(x)$, where $P_n(x)$ is the Legendre's polynomial.
